元素是按照定义顺序一个一个放到内存中去的,但并不是紧密排列的。从结构体存储的首地址开始,每个元素放置到内存中时,它都会认为内存是按照自己的大小(通常它为4或8)来划分的,因此元素放置的位置一定会在自己宽度的整数倍上开始,这就是所谓的内存对齐。

什么是内存对齐

元素是按照定义顺序一个一个放到内存中去的,但并不是紧密排列的。从结构体存储的首地址开始,每个元素放置到内存中时,它都会认为内存是按照自己的大小(通常它为4或8)来划分的,因此元素放置的位置一定会在自己宽度的整数倍上开始,这就是所谓的内存对齐。

编译器为程序中的每个“数据单元”安排在适当的位置上。C语言允许你干预“内存对齐”。如果你想了解更加底层的秘密,“内存对齐”对你就不应该再模糊了。

例子

理论上,int占4byte,char占一个byte,将他们放在一个结构体里面,这个结构体应该占5byte,但是实际上却不是这样,这就是内存对齐导致的。

1
2
3
4
5
6
7
8
9
10
#include<stdio.h>
struct{
int x;
char y;
}Test;

int main() {
printf("%d\n",sizeof(Test)); // 输出8不是5
return 0;
}

为什么要内存对齐

  1. **平台原因(移植原因)**:不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
  2. 性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
  • 假如没有内存对齐机制,数据可以任意存放,现在一个int变量存放在从地址1开始的联系四个字节地址中,该处理器去取数据时,要先从0地址开始读取第一个4字节块,剔除不想要的字节(0地址),然后从地址4开始读取下一个4字节块,同样剔除不要的数据(5,6,7地址),最后留下的两块数据合并放入寄存器。这需要做很多工作。
  • 现在有了内存对齐的,int类型数据只能存放在按照对齐规则的内存中,比如说0地址开始的内存。那么现在该处理器在取数据时一次性就能将数据读出来了,而且不需要做额外的操作,提高了效率。

内存对齐规则

  1. 基本类型的对齐值就是其sizeof值;
  2. 数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行;
  3. 结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
struct {
int i;
char c1;
char c2;
}Test1;

struct {
char c1;
int i;
char c2;
}Test2;

struct {
char c1;
char c2;
int i;
}Test3;

int main() {
printf("%d\n",sizeof(Test1)); // 输出8
printf("%d\n",sizeof(Test2)); // 输出12
printf("%d\n",sizeof(Test3)); // 输出8
return 0;
}

默认#pragma pack(4),且结构体中最长的数据类型为4个字节,所以有效对齐单位为4字节,下面根据上面所说的规则以第二个结构体来分析其内存布局: 首先使用规则1,对成员变量进行对齐:

  • sizeof(c1) = 1 <= 4(有效对齐位),按照1字节对齐,占用第0单元;
  • sizeof(i) = 4 <= 4(有效对齐位),相对于结构体首地址的偏移要为4的倍数,占用第4,5,6,7单元;
  • sizeof(c2) = 1 <= 4(有效对齐位),相对于结构体首地址的偏移要为1的倍数,占用第8单元;

然后使用规则2,对结构体整体进行对齐:

第二个结构体中变量i占用内存最大占4字节,而有效对齐单位也为4字节,两者较小值就是4字节。因此整体也是按照4字节对齐。由规则1得到s2占9个字节,此处再按照规则2进行整体的4字节对齐,所以整个结构体占用12个字节。

修改C语言对齐方式

更改C编译器的缺省字节对齐方式:

在缺省情况下,C编译器为每一个变量或是数据单元按其自然对界条件分配空间。一般地,可以通过下面的方法来改变缺省的对界条件:

  • 使用伪指令#pragma pack (n),C编译器将按照n个字节对齐。
  • 使用伪指令#pragma pack (),取消自定义字节对齐方式。

另外,还有如下的一种方式:

  • __attribute((aligned (n))),让所作用的结构成员对齐在n字节自然边界上。如果结构中有成员的长度大于n,则按照最大成员的长度来对齐。
  • attribute((packed)),取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐。

不同平台上编译器的 pragma pack 默认值不同。而我们可以通过预编译命令#pragma pack(n), n= 1,2,4,8,16来改变对齐系数。

例如,对于上个例子的三个结构体,如果前面加上#pragma pack(1),那么此时有效对齐值为1字节,此时根据对齐规则,不难看出成员是连续存放的,三个结构体的大小都是6字节。

修改C++内存对齐方式

c++11以后引入两个关键字 alignas alignof。其中alignof可以计算出类型的对齐方式,alignas可以指定结构体的对齐方式。

但是alignas在某些情况下是不能使用的,具体见下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
struct Info {
uint8_t a;
uint16_t b;
uint8_t c;
};

std::cout << sizeof(Info) << std::endl; // 6 2 + 2 + 2
std::cout << alignof(Info) << std::endl; // 2

struct alignas(4) Info2 {
uint8_t a;
uint16_t b;
uint8_t c;
};

std::cout << sizeof(Info2) << std::endl; // 8 4 + 4
std::cout << alignof(Info2) << std::endl; // 4

区别

  • #pragma pack (n)指定的是全局的内存对齐方式
  • alignas的粒度更小,修饰在结构体上就是指定结构体的内存对齐方式,修饰在变量上就是指定变量的内存对齐方式